
1 

Working Paper 

 IIMK/WPS/301/QM & OM/2019/05 

      January 2019 

On the Estimation of Performance Measures in a Single M/Ek/1 Queue 

Shovan Chowdhury1

1 Associate Professor, Quantitative Methods and Operations Management at the Indian Institute of Management Kozhikode, 
Kozhikode, India. IIMK Campus P.O., Kozhikode, Kerala 673570, India; Email:shovanc@iimk.ac.in ; Phone Number (+91) 495- 
2809119  



Abstract

An Erlang − k (Ek) distributed random variable can be represented as the sum of

k independent exponentially distributed random variables with the same means. In an

M/Ek/1 queueing model service process is assumed to follow Erlang distribution. Other

than its conventional uses in traffic flow, scheduling, facility design, and telecommunication,

such queueing model is widely used in manufacturing systems and inventory management to

investigate their operational performance. In this paper, the focus is on estimating measures

of performance such as traffic intensity, and the average queue size in a singleM/Ek/1/∞/∞
queueing model based on number of customers present in the queue at successive departure

epochs. Both classical and Bayesian methods of estimation are used to obtain the estimates.

A comprehensive simulation study starting with the transition probability matrix has been

carried out along with the comparison of errors associated with the estimates.
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1 Introduction

Development of queueing theory imparts models that predict behaviour of systems attempt to

provide service for randomly arriving demands. Queues (or waiting lines) help facilities or systems to

provide service in an orderly fashion. Any conclusion about a queueing problem comes from analyzing

the model representing the queue. Because of the stochastic nature of queueing systems, the analysis

is based on building a mathematical model representing a process of arrival of customers who join the

queue, the rules by which they are allowed into service and the time it takes to serve the customers

There exists a plethora of queueing models to represent the wide variety of service systems.The most

common queueing models assume that inter-arrival time and service time follow exponential distribution

or, equivalently, that number of arrivals and number of service completions follow Poisson distribution

with one server having infinite capacity where customers arrive on first come first served basis (FCFS

queue discipline) from an infinite population size and it is denoted by M/M/1/FCFS/∞/∞. In one

type of non-Markovian models, arrival or service process is assumed to follow Erlang distribution, e.g.

models denoted by M/Ek/1 and Ek/M/1. Other queueing models of interest are M/G/1, G/M/1,

GI/G/1 where inter-arrival time and service time have general or unspecified distributions (though

with known means and variances). Other than its conventional uses in traffic flow, scheduling, facility

design, and telecommunication, such queueing models are widely used in many other real-life situations

to investigate their operational performance e.g. in manufacturing systems (Govil and Fu, 1999; Koole

and Mandelbaum, 2002), in inventory management (Gayon et al. 2009, Ohta et al 2017), in health care

(Almehdawe et al., 2013, 2016), in insurance (Ramirez et al 2010) and in other related areas.

Many performance measures of queueing systems are important indicators of their productivity and

also the critical dimensions of the service quality. These performance measures are often quantitatively

estimated using corresponding queueing performance metrics (QPMs), such as average queue length

(Lq), average system length (Ls), average waiting time in system or mean sojourn time (Ws), and

waiting time in queue (Wq) (cf. Chowdhury and Mukherjee, 2016). Generally, complete specified

distributions are used for the input variables in a queueing model namely inter-arrival time and service

time. Consequently, distributions of output variables like number present in the system (system size),

waiting time etc. are derived in terms of the given distributions of input variables. Another important

effectiveness measure is traffic intensity (ρ = λ
µ ) which is a measure of average occupancy of a server

or in other words probability of the server being busy during a specified duration of time. In real life,

the assumption of a particular form for the distribution of an input variable may be justified from prior

considerations, but numerical values of input parameters (λ) and (µ) of these distributions are not given

to us. Although traffic intensity is an effectiveness measure, it can also be treated as an input parameter

in different queueing models, especially in M/M/1 and M/Ek/1 models. So, estimation of these input

parameters as well as corresponding QPMs which are non random functions of these input parameters

is essential for a better decision making.

Estimation of different performance measures are carried out by different researchers using both the

maximum likelihood (ML) principle and the Bayesian method. A key step in the estimation techniques

in the queuing theory involves the specification of likelihood function based on output measures. Such

measures can be observed under three different setups:

(i) Across independent queues - Under this set-up, observations are taken on one or more relevant random

variables from a number of identical queuing systems which form iid samples and are used to estimate

both ML and Bayes estimates of QPM’s. Aigner (1974) used time between successive arrivals, number
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of items in a queue, system waiting time and service time across n iid M/M/1 queues to obtain ML

estimators of queuing parameters. While Mukherjee and Chowdhury (2005, 2010) and Almeida and

Cruz (2017) used queue length data across n iid M/M/1 queues to obtain ML and Bayes estimates of

traffic intensity and related output measures, Cruz et al. (2017) used the same data in M/M/s queueing

systems to obtain the same set of outputs. Moreover, Chowdhury and Mukherjee (2011) used waiting

time data to obtain ML and Bayes estimates of arrival and service rate parameters along with exceedance

probabilities.

(ii) A single queue with one or more independent random variables - This situation was addressed by

many researchers in both Markovian and non Markovian systems where data was taken from one or

more independent variables from a single queue. Moran (1951) first obtained MLE of birth and death

rates in a simple birth and death process. The landmark paper under this set-up was due to Clarke

(1957) where the queue was observed for a length of time t and the number of arrivals, number of

service completions and the time spent in the empty state were considered to yield iid sample. Later,

MLE of input parameters and output measures are obtained by Wolff (1965), Cox (1965), Samaan and

Tracy (1981), Basawa and Prabhu (1981), Basawa et al. (1996), Almeida et al. (2017) in the context of

single M/M/1 and M/M/s queueing systems observing independent random variables like number of

arrivals, number of service completion, initial queue length, inter arrival times, and service times. Under

the same set-up, Bayes estimates are obtained by Muddapur (1972), Armero (1985, 1994), McGrath

and Singpurwalla (1987), Thiruvaiyaru and Basawa (1992), Armero and Bayarri (1994), Choudhury and

Borthakur (2008), Almeida et al. (2017), Quinino and Cruz (2017). Number of arrivals during successive

service periods was observed to obtain ML and Bayes estimators of traffic intensity in M/Ek/1 system by

Harishchandra and Rao (1988) and Chowdhury and Maiti (2014). Bayes estimates of arrival and service

rates are obtained in M/Ek/1 system by Wiper (1998) and Insua et al. (1998) and related hypothesis

are tested in Bhat et al. (1997) is an overview of Bayesian and ML estimation.

(iii) Single queue with dependent observations - It deals with a single queue observed over a fixed length

of time, where the random variable values are not mutually independent. Chowdhury and Mukherjee

(2013) obtained estimators in a single M/M/1 queue under this set-up. Embedded Markov chains

facilitate the study of this type of stochastic process in a queuing system such as M/G/1 as a Markov

chain (see Bhat and Bhasawa, 2002; Basawa et al., 1996).

We use the third set-up in our study. In Section 2 of this article, likelihood function is developed

on the basis of queue length at each departure epoch and MLE of performance measures are obtained

in an M/Ek/1/FIFO/∞ queuing system in equilibrium. The Bayes estimators are obtained in section

3 using squared error loss function (SELF) and precautionary error loss function (PLF). Beta and

truncated uniform distributions are used as prior distributions to obtain the Bayes estimators. Section

4 presents and discusses the computational results obtained through simulating transition probability

matrices. Section 5 concludes the paper.

In this article, we make use of a special function namely hyper-geometric function (available at R in

’hypergeo’ package) denoted by 2F1 [a, b, c, z] which has the integral form

1

β(b, c− b)

1∫
0

tb−1(1− t)c−b−1(1− tz)−adt (1.1)

3



2 Methodology

2.1 Single M/Ek/1 queue and observed data

An Erlang − k (Ek) distributed random variable can be represented as the sum of k independent

exponentially distributed random variables with the same means. In practical situations where observed

data might not bear out the exponential distribution assumption, the Erlang can provide better flexibility

by being better able to represent the real world (cf. Gross and Harris, 1998). In an M/Ek/1 queueing

system, while the arrival process (inter-arrival time) is assumed to follow exponential distribution with

pdf

a(t) = λe−λt ; t > 0,

the service process (service time) follows Erlang distribution with pdf

b(t) =
µk(µkt)k−1

(k − 1)!
e(−µkt) ; t > 0,

where 1
λ and 1

µ are the mean arrival and service rates respectively with traffic intensity ρ = λ
µ assuming

that the queue is observed for sufficiently long time to reach a steady state. Mean queue length which

is a function of ρ is also given as Lq = (r+1)ρ2

2r(1−ρ)

The queue length of an M/Ek/1/FIFO/∞ queuing system is observed at successive departure

epochs under steady state. Suppose Nt be the number of customers in the system immediately after tth

departure. The process Nt; t = 0, 1, 2, ... is a Markov Chain and the observations are dependent on

each other.

Let At be the number of customers arriving during the service of tth customer. The distribution of At

is as follows

P (At = x) =

∞∫
0

e−λt(λt)x µk(µkt)k−1e(−µkt)

x! Γ (x)
; t > 0, k ∈ 0, 1, ...∞

=

(
x+ k − 1

k − 1

)(
ρ

ρ+ k

)x(
k

ρ+ k

)k
; k ∈ 0, 1, ...∞ (2.2)

Let Pij be the transition probability P (Nt+1 = j|Nt = i) where Nt is the number of customers in the

system immediately after tth departure i.e the probability that the system will have j customers right

after tth departure when it has i customers.

Nt+1 = Nt − 1 +At+1 if Nt > 0

= At+1 if Nt = 0

Hence the conditional probabilities of Nt are given as

P (Nt+1 = j|Nt = i) = P (At+1 = j) if i = 0

= P (At+1 = j − i+ 1) if i > 0
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Hence, for an M/Ek/1 system, the transition probabilities are given by

Pij =

(
j + k − 1

k − 1

)(
ρ

ρ+ k

)j (
k

ρ+ k

)k
; i = 0, j = 0, 1, ...∞ (2.3)

=

(
j + k − i
k − 1

)(
ρ

ρ+ k

)j−i+1(
k

ρ+ k

)k
; i ≥ 1, j = (i− 1)...∞

2.2 Maximum Likelihood Method of Estimation

Suppose the process is observed till the number of departures reaches a particular value n. A single

M/Ek/1 queue is observed and data on the system size is noted at successive departure epochs. If Nt

be the number of customers present in the system immediately after tth departure, then the process Nt;

t = 0, 1, 2,...∞ is a Markov chain.

Hence, for the random variables (N0, N1, ..., Nn) the likelihood function can be expressed in terms of

transition probabilities given by

L(ρ) =

n∏
t=1

P (Nt = j|Nt = i)

It becomes convenient to track the state pairs (i,j), such that the queue length at consecutive departure

epochs rather than actual number Nt. Some of the pairs may not be admissible while several others may

be observed quite a few times. Hence, it is reasonable to consider the observed number of transitions for

each state pair as our data. Let nij be the observed number of transitions in Nt from state i to state j

such that the total number of transitions is N. Then, the likelihood function becomes

L(ρ) =

∞∏
i=0

∞∏
j=i−1

P
nij
ij (2.4)

Hence the Log-likelihood is given by

lnL(ρ) =

∞∑
j=0

n0j ln p0j +

∞∑
j=0

n1j ln p1j +

∞∑
i=2

∞∑
j=i−1

nij ln pij

=

∞∑
j=0

(n0j + n1j)(constant+ j ln ρ− (j + k) ln (k + ρ))

+

∞∑
i=2

∞∑
j=i−1

nij(const.+ (j − i+ 1) ln ρ− (j + k − i+ 1) ln (k + ρ)) (2.5)

Upon solving, we get

ˆρmle =

∞∑
j=0

j(n0j + n1j) +
∞∑
i=2

∞∑
j=i−1

(j − i+ 1)nij

N00 +N10 +N
(2.6)

where N =
∞∑
i=2

∞∑
j=i−1

nij ; N00 =
∞∑
j=0

n0j ; N10 =
∞∑
j=0

n1j

The ML Estimator is independent of shape parameter k of the Erlang distribution i.e MLE method does

not take into account the k different stages of a job and theorizes that it is one single job. This makes

the Bayesian estimation essential.
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2.3 Bayesian Method of Estimation

In the Bayesian framework, distribution of the the random variable X is not completely specified but

depends on the unknown value θ of some parameter(s) with parameter space Θ, so that for each value of

θ, X is distributed according to p(x|θ). Hence X is assumed to be a random sample, X1, X2, ..., Xn so

that p(x|θ) =
∏
p(xi|θ). From a Bayesian point of view θ is considered as a random variable. Before X

is observed, the a priori information about θ is quantified by prior distribution p(θ). After X is obtained,

the posterior distribution of θ is given by

p(θ|x) =
p(x|θ)p(θ)
p(x)

; θ ∈ Θ, (2.7)

where p(x) =
∫
p(x|θ)p(θ)dθ is constant for given x and p(x|θ) is the likelihood function L(θ) of θ. Hence

p(θ|x) is most commonly computed as

p(θ|x) ∝ L(θ)p(θ); θ ∈ Θ, (2.8)

where the proportionality constant makes p(θ|x) integrate to one.

In this section Bayes estimators of ρ and Lq are obtained under squared error loss function (SELF) and

precautionary error loss function (PLF). Beta distribution is used as prior distributions to obtain the

Bayes estimators.

2.3.1 Bayes estimator under SELF

Beta distribution with hyper-parameters (θ1, θ2) is taken as the natural conjugate prior density for ρ, it

being a pretty general distribution for a proportion that takes up various particular forms of interest to

us. Using the following prior distribution

p1(ρ| θ1, θ2) =
ρθ1−1(1− ρ)θ2−1

β(θ1, θ2)
, 0 < ρ < 1 (2.9)

and the kernel of the likelihood shown in (2.4), the posterior density of ρ becomes

q(ρ| nij θ1, θ2) = k1ρ
θ1−1(1− ρ)θ2−1

∞∏
i=0

∞∏
j=i−1

P
nij
ij , (2.10)

where the normalizing constant k1 is such that

k1

1∫
0

q(ρ| nij θ1, θ2) = 1, (2.11)

which gives

1

k1
=

1∫
0

[
ρφ1(1− ρ)θ2−1

(k + ρ)φ2

]
dρ (2.12)

= k−φ2β(φ1 + 1, θ2)2F1[φ2, φ1 + 1, φ1 + θ2 + 1;−1/k] (2.13)

where

φ1 = θ1 +

∞∑
j=0

j(n0j + n1j) +

∞∑
i=2

∞∑
j=i−1

(j − i+ 1)nij − 1 (2.14)

−φ2 =

∞∑
j=0

j(n0j + n1j) + k

∞∑
j=0

(n0j + n1j) +

∞∑
i=2

∞∑
j=i−1

(j − i+ 1 + k)nij (2.15)
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The Bayes estimator of ρ under SLF is given by

ρ̂BSELF = E(ρ| nij θ1, θ2) (2.16)

=
φ1 + 1

φ1 + θ2 + 1
2F1[φ2, φ1 + 2, φ1 + θ2 + 2;−1/k]

2F1[φ2, φ1 + 1, φ1 + θ2 + 1;−1/k]
. (2.17)

2.3.2 Bayes Estimator under PLF

Most of the Bayes procedures have been developed under the usual SE loss function, which is sym-

metrical and give equal importance to the losses due to overestimation and underestimation of equal

magnitude.There are situations where an underestimate is more serious than overestimate. In this case,

use of symmetrical loss function might be inappropriate and a useful asymmetric loss function (Pre-

cautionary loss function) could be appropriate see Norstrom (1996). This loss function is interesting in

the sense that a slight modification of squared error loss introduces asymmetry. The Precautionary loss

function (PLF) is given by,

L2(θ̂B , θ) =
(θ̂B − θ)2

θ̂B
, (2.18)

where θ and θ̂B are parameter or parametric function and estimator respectively.

Minimizing Eθ|x̃L(θ̂B , θ), i.e. solving
dEθ|x̃L(θ̂

B , θ)

dθ = 0, we get

θ̂B = [Eθ|x(θ2)]
1
2 (2.19)

Following the results as in (2.9)-(2.13), the Bayes estimator of ρ under PLF may be obtained as

ρ̂BPLF
(φ1 + 2)(φ1 + 1)

φ1 + θ2 + 2
2F1[φ2, φ1 + 3, φ1 + θ2 + 3;−1/k]

2F1[φ2, φ1 + 1, φ1 + θ2 + 1;−1/k]
. (2.20)

3 Simulation Study

3.1 Procedure

To compare the various estimates of ρ and corresponding Lq for a fixed value of k, large simulation study

has been performed. Different steps for the study are given below.

1. Total number of states (i, j) has been fixed at 15, i.e. i = j = 0, 1, 2...14.

2. Given ρ = 0.5, 0.7, 0.9, and i, generate random sample (j) of sizes 30, 50, 100 from transition

probability distribution as shown in (2.3) using the rnbinom function in the software R. The

i, j’s are the number of customers present in the system at departure points and are states of the

underlying Markov chain. Thus, eventual number of transitions constituting our data would be

N = 450, 750.

3. Number of repetitions of (i, j) observed are recorded and an observed transition matrix is formed.

If an observed transition state j corresponds to beyond the limits of j (i.e 14), j is assumed to be

14 (the upper bound). Six transition matrices are generated for these choices and are shown in

the next subsection.

4. Using the derivations in Section 2, Bayes and ML estimates of ρ and Lq are computed from the

transition matrix.

7



5. These steps are repeated 5000 times, hence estimates are generated, and their averages are taken.

Average of root mean square error (rmse) is also considered as measure of sampling fluctuations.

Here, RMSE =
√∑

(T − θ)2/5000.

3.2 Results

Using the transition matrices 1-6, ML and Bayes estimates of the performance measures are obtained

and are shown in Table 1. Following results are obtained from Table 1.

1. Bayes estimates perform better than the ML estimates in terms of RMSE. upon increasing the

shape parameter k. However, the improvement in estimation decreases with increasing k.

2. Bayes estimator of ρ performs better under PLF than SELF. However, in most cases Bayes esti-

mator of mean queue length performs better under SELF.

3. RMSE of all the estimates decrease with increase in the sample size.

4. Bayes estimates perform better at estimating parameters in terms of RMSE and practical imple-

mentation.

5. Erlangian service time model performs better than Markovian service time model in terms of

RMSE.

4 Conclusion

Inferential methods based on a Bayesian approach were used to estimate the traffic intensity ρ for M/k/1

queuing models. Using two forms of prior distributions, a beta distribution and a truncated uniform

distribution, Monte-Carlo simulations indicated that the posterior estimates are very close to the known

parameters. The root mean squared error was used to test for the most suitable prior distribution for

the data. The extensive simulation study concludes that Erlangian service time model performs better

than Markovian service time model.

8



Transition Matrix: 1

ρ = 0.5, N = 450

Transition Matrix: 2

ρ = 0.5, N = 750
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Transition Matrix: 3

ρ = 0.7, N = 450

Transition Matrix: 4

ρ = 0.7, N = 750
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Transition Matrix: 5

ρ = 0.9, N = 450

Transition Matrix: 6

ρ = 0.9, N = 750
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Table 1: ML and Bayes estimates under SELF and PLF

n ρ̂MLE ρ̂SELF ρ̂PLF LqSELF LqPLF

k = 1, ρ = 0.5 50 0.4534 0.5210 0.5128 0.9794 3.9740

Lq = 0.5 (0.1139) (0.0961) (0.0907) (0.9280) (5.1099)

100 0.4754 0.5174 0.5112 0.7065 1.3324

(0.0841) (0.0799) (0.0701) (0.4824) (1.7103)

k = 4, ρ = 0.5 50 0.4699 0.5076 0.5227 0.9604 1.4467

Lq = 0.312 (0.0990) (0.0947) (0.0919) (0.8712) (2.0090)

100 0.4864 0.5084 0.5064 0.7067 0.4014

(0.08491) (0.0784) (0.0597) (0.4829) (0.1564)

k = 1, ρ = 0.7 50 0.6377 0.6394 0.6496 2.6355 11.2479

Lq = 1.633 (0.1121) (0.1084) (0.1043) (2.106) (12.2132)

100 0.6518 0.6736 0.6771 2.6342 8.4227

(0.1084) (0.0874) (0.0843) (2.0083) (10.0890)

k = 4, ρ = 0.7 50 0.6370 0.6598 0.6702 2.6351 6.3031

Lq = 1.020 (0.1273) (0.0975) (0.0801) (2.5178) (7.3857)

100 0.6691 0.6792 0.6882 2.5695 4.2362

(0.0906) (0.0862) (0.0772) (2.1121) (5.1215)
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